Методы решения систем уравнений и их применение при решении экономических задач

Автор публикации:
Березкина Ирина Александровна
Город (населенный пункт):
г.Саров, Нижегородская область

Уметь решать систему уравнений нужно не толькои не столько в задачах, начинающихся словами «решить систему …», хотя такие задачи встречаются наиболее часто. Кроме этого, решение многих текстовых задач немыслимо без навыков работы с системами уравнений. Причем зачастую проблема состоит не в том, чтобы записать систему, адекватную текстовому условию задачи, а в том, чтобы эту систему решить!

Решить систему уравнений - это значит найти все её решения или установить, что их нет.

Существует множество методов решения системы уравнений: метод подстановки, метод алгебраического сложения, метод замены переменных, графический метод и др. Подход зависит от типа системы. Так, решение систем линейных уравнений полностью исследовано: у них найдены аналитические методы (метод Крамера) и предложено несколько численных как точных (простейший — метод Гаусса), так и приближённых (метод итераций).

Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

При моделировании экономических задач, таких как задачи управления и планирования производства, определения оптимального размещения оборудования, оптимального плана производства, оптимального плана перевозок грузов (транспортная задача), распределения кадров и др., может быть положена гипотеза линейного представления реального мира.

Математические модели таких задач представляются линейными уравнениями. Если задача многомерна, то ее математическая модель представляется системой линейных уравнений.

Данная работа актуальна с точки зрения освоения материала и для практического применения знаний не только в математике, но и в реальных жизненных ситуациях. Например, особенно часто применять такие знания требуется в экономической сфере.

Просмотр содержимого документа
Скачать файл публикации